
superres-ml
Release 0.0

Dec 08, 2020

Documentation:

1 Models available 3
1.1 Automap . 3
1.2 cnn_reconstruct . 4
1.3 dense_reconstruct . 4
1.4 AlexNet . 4
1.5 U-Net . 5
1.6 Autoencoder . 5
1.7 References . 5

2 Tutorials 7
2.1 Tomographic reconstructions . 7
2.2 Segmentation of X-ray images . 13
2.3 Dimension reduction . 16
2.4 Denoising of X-ray images . 17

3 Loss functions 21
3.1 Weighted cross entropy . 21
3.2 Balanced cross entropy . 21
3.3 Dice Loss . 21

4 Benchmark Datasets 23

5 super-resolution-ml 25
5.1 data_handeling package . 25
5.2 models package . 25

6 Indices and tables 27

i

ii

superres-ml, Release 0.0

superres-tomo is a package of useful scripts and models for applying neural networks for tomographic reconstruction
of X-ray images. The package also includes models and scripts useful for the analysis of the images generated,
allowing tasks such as semantic segmentation of very large images and removing noise from low dose images.

The tasks possible with superres-tomo are

• Image reconstruction

• Image segmentation

• Image denoising

• Image super-resolution [coming soon]

• Image fusion for super-resolution [coming soon]

superres-tomo is a produced in collaboration between the SciML group from Rutherford Appleton Laboratory and
Finden Ltd. The project has been funded by the AI3SD network

The project is also associated with a benchamrk dataset which can be used to test other super-resolution approaches
on similar data.

Documentation: 1

http://www.finden.co.uk
http://www.ai3sd.org

superres-ml, Release 0.0

2 Documentation:

CHAPTER 1

Models available

This is a list and a brief description of the various models that are currently available in superres-tomo. More detailed
information about each of the models can be found in their individual module documentaion. Additionally example
use cases are provided in the tutorials.

1.1 Automap

Automap is a network architecture that was specifically developed for tomogrpahic reconstruction.1 We have imple-
mented the architecture here. While we find that Automap does perform very well, we have alsofound that the dense
connections mean that the architecture memory requirements scale very badly and it cannot deal with many typical
sinograms.

1 Bo Zhu, Jeremiah Z. Liu, Bruce R. Rosen, Matthew S. Rosen “Image reconstruction by domain transform manifold learning” https://arxiv.org/
pdf/1704.08841.pdf

3

https://arxiv.org/pdf/1704.08841.pdf
https://arxiv.org/pdf/1704.08841.pdf

superres-ml, Release 0.0

1.2 cnn_reconstruct

This module contains a CNN model for tomographic image reconstruction. For more details on how to use this follow
the tutorial on reconstruction with a CNN.

1.3 dense_reconstruct

This module contains a densely connected model for tomographic image reconstruction. For more details on how to
use this follow the tutorial on reconstruction with a dense network.

1.4 AlexNet

AlexNet is a specific instance of a CNN. It became famous in 2012, when it outperformed all of the competition in the
ImageNet challenge. AlexNet contains eight layers; the first five are convolutional layers, some of them followed by
max-pooling layers, and the last three are fully connected layers.2 It uses the ReLU activation function.

2 Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). “ImageNet classification with deep convolutional neural networks”
(PDF). Communications of the ACM. 60 (6): 84–90

4 Chapter 1. Models available

superres-ml, Release 0.0

1.5 U-Net

The U-net architecture is particularly popular in image segmentation tasks. The model consists of convolution layers
mirrored by deconvolution layers, squeezing down and then reconstructing an image of the same size as the original.
Doing this a U-Net can convert pixels in the original image into label values and segment the image. U-nets were
initially developed for biomedical image segmentation.3

1.6 Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner.4

The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality re-
duction, by training the network to ignore signal “noise”. For this reason autoencoders can be used for denoising
images.

1.7 References

3 Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). “U-Net: Convolutional Networks for Biomedical Image Segmentation”.
arXiv:1505.04597

4 Vincent, Pascal; Larochelle, Hugo (2010). “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a
Local Denoising Criterion”. Journal of Machine Learning Research. 11: 3371–3408

1.5. U-Net 5

superres-ml, Release 0.0

6 Chapter 1. Models available

CHAPTER 2

Tutorials

2.1 Tomographic reconstructions

2.1.1 Reconstruction with a CNN

In this tutorial we will reconstruct an image from a sinogram using a convolutional neural network. We have a network
architecture for this task: models.cnn_reconstruct.models.reconstruct_cnn

Step 0

Generate the data. We have some scripts to generate sample data for this task. LibShapes.py Alternatively download
sample data from here: http://tiny.cc/vdl9rz

7

http://tiny.cc/vdl9rz

superres-ml, Release 0.0

Step 1

When the data is generated we now load it up. Use the utils.tools.read_reconstruct_library helper function to make
this easier. We then shuffle around the image/sinogram pairs to make sure that we don’t have any false ordering. We
alsoe need to make sure that superres-ml is on our pythonpath. Split the data into training and test data.

import sys
sys.path.append('/path/to/super-resolution-ml/')
from utils.tools import read_reconstruct_library

images, sinos, nim = read_reconstruct_library('data/reconstruction/shapes_random_
→˓noise_64px_norm.h5')
index = np.arange(nim)
np.random.shuffle(index)
images = images[index,:,:,:]
sinograms = sinos[index,:,:,:]
sinograms_test = sinograms[9000:]
images_test = images[9000:]
sinograms = sinograms[:9000]
images = images[:9000]

Step 2

Set up the network. We import the reconstruct_cnn netowrk from out superres-ml model library. We then compile the
network to use the Adam optimiser and to monitor the mae and mse during training. We add a callback, which makes
the training stop if the metrics have not improved for three steps.

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from models.cnn_reconstruct.models import reconstruct_cnn

model_rec = reconstruct_cnn(sinos.shape[1], sinos.shape[2])

(continues on next page)

8 Chapter 2. Tutorials

superres-ml, Release 0.0

(continued from previous page)

model_rec.compile(optimizer = Adam(lr = 0.000025), loss = 'mean_squared_error',
→˓metrics = ['mae', 'mse'])
my_callbacks = [EarlyStopping(patience=3)]

Step 3

Train the model!

training = model_rec.fit(sinograms, images,
validation_split = 0.1,
batch_size=32,
epochs = 100,
verbose = True,
callbacks=my_callbacks)

history = model_rec.history

2.1.2 Reconstruction with a Dense Network

This tutorial is just like the one above, but we use a dense network at the start before convolutions. This kind of
network gives very good results but requires huge memory for any larger images. See the architecture below.

Steps 0, 1 and 3 are the exact same as for the CNN.

Step 0

Generate the data. We have some scripts to generate sample data for this task. LibShapes.py Alternatively download
sample data from here: http://tiny.cc/vdl9rz

2.1. Tomographic reconstructions 9

http://tiny.cc/vdl9rz

superres-ml, Release 0.0

Step 1

When the data is generated we now load it up. Use the utils.tools.read_reconstruct_library helper function to make
this easier. We then shuffle around the image/sinogram pairs to make sure that we don’t have any false ordering. We
alsoe need to make sure that superres-ml is on our pythonpath. Split the data into training and test data.

from utils.tools import read_reconstruct_library
import sys
sys.path.append('/path/to/super-resolution-ml/')

images, sinos, nim = read_reconstruct_library('data/reconstruction/shapes_random_
→˓noise_64px_norm.h5')
index = np.arange(nim)
np.random.shuffle(index)
images = images[index,:,:,:]
sinograms = sinos[index,:,:,:]
sinograms_test = sinograms[9000:]
images_test = images[9000:]
sinograms = sinograms[:9000]
images = images[:9000]

Step 2

Set up the network. We import the reconstruct_cnn netowrk from out superres-ml model library. We then compile the
network to use the Adam optimiser and to monitor the mae and mse during training. We add a callback, which makes
the training stop if the metrics have not improved for three steps.

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from models.dense_reconstruct.models import dense_reconstruct

model_rec = dense_reconstruct(sinos.shape[1], sinos.shape[2])
model_rec.compile(optimizer = Adam(lr = 0.000025), loss = 'mean_squared_error',
→˓metrics = ['mae', 'mse'])
my_callbacks = [EarlyStopping(patience=3)]

10 Chapter 2. Tutorials

superres-ml, Release 0.0

Step 3

Train the model!

training = model_rec.fit(sinograms, images,
validation_split = 0.1,
batch_size=32,
epochs = 100,
verbose = True,
callbacks=my_callbacks)

history = model_rec.history

2.1.3 Reconstruction with a Automap

This tutorial is just like the one above, but we use a dense network at the start before convolutions. This kind of
network gives very good results but requires huge memory for any larger images. See the architecture below.

Steps 0, 1 and 3 are the exact same as for the CNN and dense architectures.

Step 0

Generate the data. We have some scripts to generate sample data for this task. LibShapes.py Alternatively download
sample data from here: http://tiny.cc/vdl9rz

2.1. Tomographic reconstructions 11

http://tiny.cc/vdl9rz

superres-ml, Release 0.0

Step 1

When the data is generated we now load it up. Use the utils.tools.read_reconstruct_library helper function to make
this easier. We then shuffle around the image/sinogram pairs to make sure that we don’t have any false ordering. We
alsoe need to make sure that superres-ml is on our pythonpath. Split the data into training and test data.

from utils.tools import read_reconstruct_library
import sys
sys.path.append('/path/to/super-resolution-ml/')

images, sinos, nim = read_reconstruct_library('data/reconstruction/shapes_random_
→˓noise_64px_norm.h5')
index = np.arange(nim)
np.random.shuffle(index)
images = images[index,:,:,:]
sinograms = sinos[index,:,:,:]
sinograms_test = sinograms[9000:]
images_test = images[9000:]
sinograms = sinograms[:9000]
images = images[:9000]

Step 2

Set up the network. We import the reconstruct_cnn netowrk from out superres-ml model library. We then compile the
network to use the Adam optimiser and to monitor the mae and mse during training. We add a callback, which makes
the training stop if the metrics have not improved for three steps.

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from models.automap.models import automap

model_rec = automap(sinos.shape[1], sinos.shape[2])
model_rec.compile(optimizer = Adam(lr = 0.000025), loss = 'mean_squared_error',
→˓metrics = ['mae', 'mse'])
my_callbacks = [EarlyStopping(patience=3)]

12 Chapter 2. Tutorials

superres-ml, Release 0.0

Step 3

Train the model!

training = model_rec.fit(sinograms, images,
validation_split = 0.1,
batch_size=32,
epochs = 100,
verbose = True,
callbacks=my_callbacks)

history = model_rec.history

2.2 Segmentation of X-ray images

2.2.1 Binary segmentation

This tutorial looks at segmentation of sections of an image, for example collected from X-ray imaging. We have a set
of images where we have already labelled what the different parts of the image are, now we want to train and apply a
model to another set, labelling new X-ray images.

To do this we will use a U-net architecture. There is one big challenge in using most U-net architectures that you will
find on the web.

The image sizes are very large. This means that the image and the model cannot fit together in the memory.

To overcome the problem we will use a routine in superres-tomo to create patches from the image and learn se-
quentially from each patch. To do do this we have implemented the data_handeling.generators.mask_patch_from_file
function which acts as a generator to feed the network for training.

Step 0

Generate the data. There is a helper script in the directory data/segmentation run this to generate the data for this
tutorial. Run this script to generate the data for this tutorial.

Also make sure the superres-ml package is in your pythonpath

2.2. Segmentation of X-ray images 13

superres-ml, Release 0.0

import sys
sys.path.append('/path/to/super-resolution-ml/')

Step 1

Once the data is in place we are ready to start setting up the U-net. Tell the code where to find the images and masks,
the types of file to expect.

datapath= 'data/segmentation/train/' #<the root directory of images and masks for
→˓training>
valpath= 'data/segmentation/val/' #<the root directory of images and masks for
→˓validation>
img_dir= 'noiseless/' # <the subdirectory where images are>
mask_dir= 'label/' #<the subdirectory where masks are>
ftypes= ['./tiff'] # (<filetypes to look for>) # e.g. ('.tif')

Step 2

Set up the information about the size of the original image and the size of the patches to take from the image. Also
here you can define a list of which patches to use. This last feature is useful when the interesting features are only in
a section of the image. You can specify the particular patches to consider for the training. The numbering of patches
starts from zero and proceeds left to right top to bottom. If the patch list is left empty the generator uses all patches.

image_shape = (1280, 1280)
patch_shape = (64, 64)
patch_range = []

Step 3

Set up the generator. This is the function that will flow the patches from the images to the netowrk for training.

from data_handeling.generators import mask_patch_from_file

myGene = mask_patch_from_file(datapath,
img_dir, mask_dir,
patch_shape, image_shape,
types = ftypes, patch_range=patch_range,
debug=False,
batch_size = 1,
normalise_images=False)

valGene = mask_patch_from_file(valpath,
img_dir, mask_dir,
patch_shape, image_shape,
types = ftypes, patch_range=patch_range,
debug=False,
batch_size = 1,
normalise_images=False)

14 Chapter 2. Tutorials

superres-ml, Release 0.0

Step 4

Define the netowrk architecture, the hyperparameters and the training time. Here the input size is the dimension of
the patches, also we have just 1 channel as the image is greyscale. We use a standard Adam optimiser. We use
binary_crossentropy as the loss function and also monitor the accuracy during training.

from models.u_net.models import unet_3layer
import models.losses.custom_loss_functions as losses
from tensorflow.keras.optimizers import Adam

model = unet_3layer(input_size = (patch_shape[0], patch_shape[1], 1))
opt = Adam()
model.compile(loss=losses.weighted_cross_entropy(2), optimizer=opt,

metrics=["accuracy"])

Step 5

Train and save!

epochs = 6
steps_per_epoch = 2000
model.fit(myGene, steps_per_epoch=steps_per_epoch,

epochs=epochs, validation_data=valGene, validation_steps=100)
model.save_weights('saved_weights.hdf5')

Step 6

Run the model for inference. Having trained the model on some images you can now try to deploy on new examples.
We have the utils.tools.inference_binary_segmentation() helper function to do this. First we load
up the saved model and weights.

from utils.tools import inference_binary_segmentation

datapath = 'data/segmentation/test/noiseless/'
patch_shape = (64, 64)
image_shape = (1280, 1280)
savepath = './inferred_masks/'

inference_binary_segmentation(datapath, patch_shape, image_shape, model,
file_prefix='binary_mask', savepath=savepath, fig_size=(8, 8),
normim=False)

In the inferred_masks directory there should now be a masking file something like:

2.2. Segmentation of X-ray images 15

superres-ml, Release 0.0

2.3 Dimension reduction

This module allows one to project a dataset of images into lower dimensional space (2 or 3 D usually). It is very useful
for inspeting datasets to look for outliers and anomallies. It is also useful to see if a new image is out of the training
distribution, which can be a problem for CNN based reconstructions. See our paper Identifying and avoiding training
set bias in neural networks for tomographic image reconstruction for a discussion of this.

If you do not already have the data you can download it from

16 Chapter 2. Tutorials

superres-ml, Release 0.0

• Sinograms: https://tinyurl.com/y2t56hgd

• Images: https://tinyurl.com/y2l4jvoj

Then unzip the data. It contains datasets used in our paper. In the example below we load 2000 sinograms, taken from
all of the materials.

import sys
sys.path.append('/path/to/super-resolution-ml/')
from utils.tools import read_reconstruct_library

images, sinos, nim = read_reconstruct_library('./All_mixed_2K_sinograms_raw.h5')

Run the dimensionality reduction. The code below will convert each of your images to a 2D vector. You can alter the
settings of the dimensionality reduction. The code uses the scikit-learn implementation of tSNE to reduce dimensions.
You can change the number of desired output dimensions by passing the n_components_tsne to the function, by default
it is 2.

x = dimension_reducer(sinos)

Plot and inspect your result. You can now look at the reduced dimesnion map to see if there are any outliers or
anomalies.

plt.scatter(x[:, 0], x[:, 1])

2.4 Denoising of X-ray images

2.4.1 Variational Autoencoder

Often images that are reconstructed contain low signal to noise ratios, if the dose was low or the collection time short.
In these cases it would often be desireable to remove the noise and accentuate the signal in an image. We can do this
using a Variational Autoencoder (VAE)

2.4. Denoising of X-ray images 17

https://tinyurl.com/y2t56hgd
https://tinyurl.com/y2l4jvoj

superres-ml, Release 0.0

Step 0

Set up the data. You can use the data/denoising/generatedata.py script to generate some example data. Then use the
helper functions build_list_images and build_autoencoder_data to build the data set ready to train the VAE.

We need to specify the data shape with the input_data keyword and then specify directories to find the training and
validation inputs and labels.

import sys
sys.path.append('/path/to/super-resolution-ml/')
from data_handeling.tools import build_list_images
from models.autoencoder.tools import build_autoencoder_data

input_data = (64, 64, 1)

datapath = '../data/denoising/train/noisy/'
Xfiles = build_list_images(datapath, types = ['.tiff'])
datapath = '../data/denoising/train/noiseless/'
yfiles = build_list_images(datapath, types = ['.tiff'])
X, labels = build_autoencoder_data(Xfiles, yfiles=yfiles, input_data=input_data)
datapath = '../data/denoising/test/noisy/'
Xfiles = build_list_images(datapath, types = ['.tiff'])
datapath = '../data/denoising/test/noiseless/'
yfiles = build_list_images(datapath, types = ['.tiff'])
xtest, ltest = build_autoencoder_data(Xfiles, yfiles, input_data=input_data)

Step 1

Set up the VAE. Here we import the model as well as functions to train and run the model and an optimiser. We need
to set the number of units to use in the bottle-neck (latent) space.

from models.autoencoder.models import CVAE
from models.autoencoder.tools import vae_train, vae_inference
from tensorflow.keras.optimizers import Adam

latent_dim = 16
optimizer = Adam(lr=0.0001)
epochs = 500
model = CVAE(latent_dim, input_data)

Step 2

Train the model. Using the vae_train function set the model to train.

vae_train(model, X, labels, xtest, ltest, epochs, optimizer, sigmoid=False)

Step 3

Try the trained model out on some of the test data.

out = vae_inference(model, np.expand_dims(X[9], axis=0), sigmoid=True)

18 Chapter 2. Tutorials

superres-ml, Release 0.0

2.4. Denoising of X-ray images 19

superres-ml, Release 0.0

20 Chapter 2. Tutorials

CHAPTER 3

Loss functions

superres-tomo comes with a series of loss functions not found in the ml packages that it is built on. These are primarily
useful in cases where there is class imbalance in the training/test set.

3.1 Weighted cross entropy

The weighted cross entropy (WCE) is an extension of the standard cross entropy. WCE can be used where there is a
large class imbalance (excess of a particular label). In WCE all positive examples get weighted by a coefficient, which
can be set in inverse proportion to the amount of a given label in the training set.

WCE is defined as

𝑊𝐶𝐸(𝑝, 𝑝) = −(𝛽𝑝 log(𝑝) + (1− 𝑝) log(1− 𝑝))

To bias against false positives set 𝛽 < 1 to bias against false positives set 𝛽 < 1

3.2 Balanced cross entropy

Balanced cross entropy (BCE) is similar to WCE, but it also biases negatives as well as poitives.

𝐵𝐶𝐸(𝑝, 𝑝) = −(𝛽𝑝 log(𝑝) + (1− 𝛽)(1− 𝑝) log(1− 𝑝))

3.3 Dice Loss

The Dice loss is a loss function that is particularly useful if boundary detection is important in your image analysis.
The dice loss is defined as

𝐷𝐿(𝑝, 𝑝) = 1− 2𝑝𝑝+ 1

𝑝+ 𝑝+ 1

21

superres-ml, Release 0.0

22 Chapter 3. Loss functions

CHAPTER 4

Benchmark Datasets

superres-tomo is assoicated with a range of benchmark datasets. These can be used to benchmark our implementations,
to compare new methods, or simply as your own test.

Link Real/SyntheticSource Ex-
peri-
ment

Dimen-
sions

Number
of data

Notes

http://tiny.
cc/3hydsz

Syn-
thetic

DIV2K n/a 64x64 180,000 Image/sinogram pairs

http://tiny.
cc/m3djsz

Syn-
thetic

Random
shapes

128x128 55,000 Image/sinogram pairs

http://tiny.
cc/58zdsz

Real Micro
CT

Re-
actor
bed

185x185x10011000 3rd dim is the z-position

http://tiny.
cc/ft0dsz

Real Micro
CT

Re-
actor
bed

369x369x10011000 Same experiment as above; higher res

http://tiny.
cc/0a0dsz

Real XRD-
CT

Re-
actor
bed

75x75x20381 From same experiment as the data above.
3rd dim is the diffraction pattern.

http://tiny.
cc/jd0dsz

Real XRD-
CT

Re-
actor
bed

149x149x20381 Same experiment as above; higher-res

23

http://tiny.cc/3hydsz
http://tiny.cc/3hydsz
http://tiny.cc/m3djsz
http://tiny.cc/m3djsz
http://tiny.cc/58zdsz
http://tiny.cc/58zdsz
http://tiny.cc/ft0dsz
http://tiny.cc/ft0dsz
http://tiny.cc/0a0dsz
http://tiny.cc/0a0dsz
http://tiny.cc/jd0dsz
http://tiny.cc/jd0dsz

superres-ml, Release 0.0

24 Chapter 4. Benchmark Datasets

CHAPTER 5

super-resolution-ml

5.1 data_handeling package

5.1.1 Submodules

5.1.2 data_handeling.generators module

5.1.3 data_handeling.tools module

5.1.4 Module contents

5.2 models package

5.2.1 Subpackages

models.alex_net package

Submodules

models.alex_net.models module

Module contents

models.autoencoder package

Submodules

25

superres-ml, Release 0.0

models.autoencoder.models module

models.autoencoder.tools module

Module contents

models.automap package

Submodules

models.automap.models module

Module contents

models.cnn_reconstruct package

Submodules

models.cnn_reconstruct.models module

Module contents

models.dense_reconstruct package

Submodules

models.dense_reconstruct.models module

Module contents

models.losses package

Submodules

models.losses.custom_loss_functions module

Module contents

models.u_net package

Submodules

models.u_net.models module

Module contents

5.2.2 Module contents

26 Chapter 5. super-resolution-ml

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

	Models available
	Automap
	cnn_reconstruct
	dense_reconstruct
	AlexNet
	U-Net
	Autoencoder
	References

	Tutorials
	Tomographic reconstructions
	Segmentation of X-ray images
	Dimension reduction
	Denoising of X-ray images

	Loss functions
	Weighted cross entropy
	Balanced cross entropy
	Dice Loss

	Benchmark Datasets
	super-resolution-ml
	data_handeling package
	models package

	Indices and tables

